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Abstract

Acute kidney injury (AKI) is common in critically ill patients and associated with increased 

morbidity and mortality. Dysfunction of other organs is an important cause of poor outcomes from 

AKI. Ample clinical and epidemiological data show that AKI is associated with distant organ 

dysfunction in lung, heart, brain, and liver. Recent advancements in basic and clinical research 

have demonstrated physiologic and molecular mechanisms of distant organ interactions in AKI 

including leukocyte activation and infiltration, generation of soluble factors like inflammatory 

cytokines/chemokines, and endothelial injury. Oxidative stress and production of reactive oxygen 

species (ROS) as well as dysregulation of cell death in distant organs are also important 

mechanism of AKI-induced distant organ dysfunction. This review will update recent clinical and 

experimental findings on organ crosstalk in AKI and highlight potential molecular mechanisms 

and therapeutic targets to improve clinical outcomes during AKI.

Keywords

acute kidney injury (AKI); multi-organ dysfunction; organ crosstalk; lung; cardiorenal syndrome 
(CRS); reno-cerebral reflex; hepatic dysfunction; microbiota; gut-kidney axis; review

INTRODUCTION

Acute kidney injury (AKI) is a serious medical condition that is associated with significantly 

increased risks for mortality, hospital length of stay, and healthcare-associated costs.1 Based 

on the KDIGO (Kidney Disease Improving Global Outcomes) definition, AKI complicates 
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18% of all hospitalized patients, with an associated inhospital mortality of 11%.2 The 

incidence of AKI increases to 57% in critically ill patients, with 27% in-hospital mortality.3 

The mortality rate soars to 45–60% when AKI is complicated by other organ dysfunctions, 

like pneumonia, acute heart failure, or sepsis.4

Uremic toxin accumulation, metabolic acidosis, electrolyte imbalances, and fluid overload 

are the traditionally well-known consequences of AKI that contribute to the high mortality.5 

However, a significant proportion of the AKI-associated mortality cannot be simply 

explained by loss of kidney functions or by complications occurring during AKI treatment. 

Instead, AKI-induced multi-organ dysfunction is of particular importance in outcomes of 

critically ill patients with AKI. ‘AKI-induced distant organ crosstalk’ describes the 

phenomenon when AKI leads to dysfunction of other organs including lung, heart, brain, 

liver, and intestine via aberrant organ-organ communication.6,7 (Fig 1) Accumulating 

evidence indicates that interruption of normal immunological balance and generation of 

inflammatory mediators are important in AKI-induced distant organ crosstalk.8 Additional 

mechanisms include increased endothelial injury, cellular apoptosis, and oxidative stress.9–11

Organ crosstalk can happen following various types of AKI, but there is no clear data yet 

whether the etiology of AKI affects the extent of distant organ dysfunction. There is higher 

chance of distant organ dysfunction with more severe AKI, but even patients with mild to 

moderate AKI that is not severe enough to require RRT can also experience multi-organ 

dysfunction.12 Animal models are useful for discovery and mechanistic studies, but do not 

fully mimic the complexities of human AKI. In addition, inbred animal strains with 

relatively limited genetic diversity cannot fully represent human populations with 

polymorphic genetic backgrounds.13 Therefore, researchers need caution in extrapolating 

animal data to humans. In this review, we will briefly update clinical and experimental 

findings on distant organ effects of AKI and discuss potential molecular and therapeutic 

targets.

KIDNEY-LUNG INTERACTIONS

Clinical impact

Acute lung injury is one of the most common extra-renal problems in AKI patients. 

Accumulation of uremic toxins negatively affects lung mechanics and pulmonary gas 

exchange.7 Fluid overload can lead to alveolar edema and metabolic acidosis that results in 

hyperventilation in AKI patients.7 In clinical settings, respiratory complications from AKI 

include pulmonary edema, respiratory failure needing mechanical ventilation, longer 

duration of mechanical ventilation, and slower weaning from mechanical ventilation.14 

Epidemiological studies demonstrate that respiratory failure requiring mechanical ventilation 

is an important independent risk factor for mortality in AKI patients.15–17

Clinical evidence

The underlying pathogenesis of respiratory failure in AKI patients is incompletely 

understood, but several potential mechanisms have been widely studied. (Fig 2) The effects 

of AKI on lungs are largely due to pulmonary edema, which can be divided into hydrostatic 
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or non-hydrostatic forms.18 Fluid overload, the major cause of hydrostatic edema, occurs 

because of decreased urine output and dampened cardiac output, and is traditionally 

recognized as a major cause of lung dysfunction in AKI patients. Fluid overload has been 

strongly associated with increased mortality in AKI patients accompanying acute lung injury 

(ALI), and restrictive fluid management improved the lung function and shortened the time 

that mechanical ventilation is needed in these patients.19

Non-hydrostatic pulmonary edema occurs without overt fluid overload. During AKI, the 

integrity of alveolar-capillary barrier is impaired by uremia, systemic inflammation, and 

increased oxidative stress, causing fluid accumulation in the lung.7 Basu et al. described this 

phenomenon as ‘nephrogenic pulmonary edema’ and this condition cannot be improved 

simply by resolving uremia and controlling fluid balance with dialysis.20 Several clinical 

studies have suggested the role of inflammation in the initiation and progression of lung 

injury after AKI. Increased inflammatory cytokines, such as interleukin (IL)-6 and/or IL-8 

have been associated with prolonged ventilator weaning times21 and increased mortality22 in 

AKI patients with ALI. Non-hydrostatic pulmonary edema has been actively studied in the 

experimental AKI rather than in the clinical setting which will be further described in the 

next section.

Laboratory evidence

Extending from these clinical observations, a number of experimental animal studies 

elucidated the underlying mechanisms of AKI-lung crosstalk, demonstrating increased 

leukocyte infiltration, increased inflammatory cytokines/chemokine expression, and 

dysregulation of salt/water transporters with abnormal vascular permeability.9,23,24 (Fig 3)

Several immune cells are involved in AKI-associated lung injury. Neutrophil infiltration into 

lung has been found in two different AKI models [bilateral nephrectomy (BNx) and bilateral 

ischemia-reperfusion injury (IRI) models]23,25 and the release of neutrophil elastase plays a 

crucial role in the pathogenesis of ALI following AKI.26 T lymphocyte infiltration into lung 

also increases during renal IRI and T cell-deficient mice show decreased pulmonary caspase 

3 activation, demonstrating the role of T cells in ischemic AKI-induced pulmonary 

apoptosis.27 Macrophage infiltration into lung increases pulmonary vascular permeability 

and interstitial edema in an ischemic AKI model,28,29 which is attenuated by administration 

of the vagus nerve-dependent macrophage deactivator CNI-1493.29

Inflammatory cytokines/chemokines serve important roles in lung dysfunction during AKI. 

Based on the clinical finding of increased IL-6 level in acute respiratory distress syndrome 

(ARDS) patients complicated by AKI,30 several experimental studies have demonstrated that 

IL-6 contribute to AKI-induced lung injury.23,31 Circulating IL-6 induces lung chemokine 

(C-X-C motif) ligand 1 (CXCL1); in addition, blocking CXCL1 as well as IL-6 can reduce 

AKI-induced lung injury.31 A recent mouse study showed that high-dose peritoneal dialysis 

after AKI significantly lowers serum IL-6 concentration as well as lung inflammation.32 

However, the counter-inflammatory role of IL-6 was demonstrated in another study showing 

that systemic IL-6 could upregulate splenic IL-10 production as a compensatory anti-

inflammatory mechanism in AKI-induced lung injury.33 Administration of the anti-

inflammatory cytokine IL-10 also attenuate pulmonary inflammation.9 Increased tumor 
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necrosis factor α (TNF-α) levels and TNF receptor 1 (TNFR1)-dependent pulmonary 

apoptosis have been observed in a mouse IRI model.34

Dysfunctional pulmonary water and salt transporters have been studied as potential mediator 

of non-hydrostatic pulmonary edema after AKI. In normal conditions, apical sodium 

channels and basolateral adenosine triphosphatase (ATPase) on pneumocytes actively 

transport sodium from alveolar space into the pulmonary interstitium.35 This active transfer 

of sodium creates an osmotic gradient with consequent water movement in the same 

direction.36 In both the ischemic and non-ischemic AKI models, mice show pulmonary 

septal edema and alveolar hemorrhage in spite of decreased body weight.9 This finding 

suggests that dysfunctional pulmonary water transport rather than total body water 

accumulation is a major culprit for AKI-induced pulmonary edema. Another study found 

significant decreases in lung mRNA expression of epithelial sodium channel and aquaporin 

5, consistent with a decreased level of aquaporin 5 protein, suggesting that the decreased 

expression of alveolar salt and water transporter cause non-hydrostatic pulmonary edema 

after AKI.24 Recently, Yabuuchi et al. showed that indoxyl sulfate, a typical oxidative stress-

inducing uremic toxin, could play a role in the dysregulation of pulmonary aquaporin 5 in 

AKI using a rat bilateral nephrectomy model.37 This study also showed that administration 

of oral spherical adsorptive carbon beads, AST-120, lowers the level of indoxyl sulfate in 

serum and lung, restoring pulmonary aquaporin 5 protein expression.

Potential therapeutic targets

Supporting the clinical and experimental findings above, delivery of IL-10 and blocking 

IL-6, CXCL1, or TNF-α have efficacy on AKI-induced lung injury in animal models, 

showing their potential as future therapeutic targets.23,31,34 Administration of atrial 

natriuretic peptide (ANP), which has anti-inflammatory and natriuretic properties, shows 

protective effects on the ischemic injured kidney as well as the contralateral kidney, lungs, 

and heart in a rat IRI model.38 However, clinical trials on ANP have not shown benefit in 

AKI.39,40

Oxidative stress caused by leukocyte infiltration into lung can lead to tissue damage through 

systemic inflammatory reaction and active free radical generation.41,42 A recent study 

demonstrated the protective potential of prostaglandin E1 (PGE1) on modulation of 

oxidative stress during renal IRI-induced lung injury in rats.42 Administration of PGE1 has 

been found to decrease both IRI-induced kidney injury and IRI-induced remote lung damage 

through increased antioxidant enzyme activities and decreased leukocyte activities.

Uremic toxins as well as multiple cytokines and toll-like receptor 4 (TLR-4)/high-mobility 

group box protein B1 (HMGB1) likely participate in distant organ effects of AKI.43 In the 

BNx-induced lung injury model, the interaction of TLR-4 with HMGB1 contributes to lung 

injury induced by AKI and these damages are alleviated in TLR-4-mutant mice or with the 

use of HMGB1 blockade.44 An in vitro study showed that hemofiltration using surface-

treated polyacrylonitrile (AN69ST) membrane could adsorb HMGB145 and another ex vivo 
study in human cells showed that continuous hemofiltration using a cellulose triacetate 

membrane could remove various cytokines as well as HMGB1.46 Removal of cytokines and 
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uremic toxins with CRRT using a novel membrane is a promising approach to treat distant 

organ injury in AKI.

KIDNEY-HEART INTERACTIONS

Clinical impact

The interaction between kidney and heart is often found in patients and primary disorder of 

one of these organs often results in secondary dysfunction of the other organ. The term, 

“cardiorenal syndrome (CRS)”, has been increasingly used to explain this relationship, and a 

working definition/classification of CRS was established in 2008 by Ronco et al..47 (Box 1) 

These complex interactions between kidney and heart contribute to the worse outcomes from 

dual organ dysfunction compared to single organ dysfunction. Although the hemodynamic 

mechanisms in acute cardiac decompensation that leads to AKI are well described, less is 

known about the effect of AKI on heart.

Box 1

Classification of cardiorenal syndromes

CRS General Definition

A complex pathophysiological disorder of the heart and the kidneys whereby acute or 

chronic dysfunction in one organ may induce acute or chronic dysfunction in the other 

organ47

Types of CRS

• CRS Type 1 (Acute cardiorenal syndrome)

– Description: Abrupt worsening of cardiac function leading to AKI

– Examples: Acute coronary syndrome, acute decompensated heart 

failure

• CRS Type 2 (Chronic cardiorenal syndrome)

– Description: Chronic abnormalities in cardiac function causing 

progressive and permanent CKD

– Examples: chronic heart failure, ischemic heart disease, 

hypertension

• CRS Type 3 (Acute renocardiac syndrome)

– Description: Abrupt worsening of renal function causing acute 

cardiac disorder

– Examples: Postsurgery AKI, acute glomerulonephritis, 

rhabdomyolysis

• CRS Type 4 (Chronic renocardiac syndrome)
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– Description: CKD contributing to decreased cardiac function, 

cardiac hypertrophy, fibrosis, and/or increased risk of adverse 

cardiovascular events

– Examples: Cardiac hypertrophy/fibrosis in CKD

• CRS Type 5 (Secondary cardiorenal syndrome)

– Description: Systemic condition causing both acute cardiac and 

kidney injury and dysfunction

– Examples: sepsis, diabetes mellitus

Note: Based on the information presented in Ronco et al..47; Abbreviations: CRS, 

Cardiorenal Syndrome; AKI, acute kidney injury; CKD, chronic kidney injury

Clinical evidence

CRS can occur following any forms of AKI, but only a limited number of studies have 

studied cardiovascular outcomes of AKI patients, making the exact estimation for the 

incidence and outcome of AKI-induced CRS unclear. In one multicenter AKI cohort study, 

cardiovascular failure was found in 60% of AKI patients in ICU.48 Another study showed 

that cardiovascular-related deaths were the second most common cause of death after sepsis 

in AKI patients.15 Long-term cardiovascular effects of AKI have also been observed: 

postoperative AKI was found to be associated with increased 5-year risk of myocardial 

infarction and heart failure as well as increased all-cause mortality.49 In another study, 

patients who recovered from dialysis-requiring AKI had higher long-term risks of coronary 

events and all-cause mortality regardless of subsequent progression to chronic kidney 

disease (CKD), showing the independent association of AKI with long-term cardiovascular 

risk.50 More detailed clinical studies are required to elucidate the exact risk and impact of 

AKI-induced CRS.

Laboratory evidence

AKI causes cardiac dysfunction through many possible mechanisms. (Fig 4) Fluid overload 

attenuates myocardial performance and induces maladaptive myocardial remodeling.49 

Accumulation of uremic toxins leads to cardiovascular toxicity and can increase risk for 

myocardial ischemia by compromising coronary vasoreactivity.51 Protein-bound uremic 

toxins (PBUTs) have deleterious effect on many vital organs including kidney, heart and 

blood vessels and are poorly removed by current dialysis approaches. Indoxyl sulfate and p-

cresyl sulfate, the most well-known PBUTs, have been shown to induce vascular 

inflammation, endothelial dysfunction, and vascular calcification.52 Metabolic acidosis also 

affect the myocardial contractility and electrolyte imbalances like hyper/hypokalemia trigger 

life-threatening arrhythmia.53

Beside these classically-known mechanisms, there are other important factors with direct 

and immediate impact on heart, including systemic immune response, activation of the 

sympathetic nervous system (SNS) and the renin-angiotensin-aldosterone system (RAAS), 

and increased oxidative stress.54,55 A rat AKI study showed that renal IRI, but not bilateral 
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nephrectomy results in a significant increase in myocardial apoptosis, indicating that 

systemic inflammation after IRI as opposed to uremia itself has more important role in the 

myocardial injury following AKI.56 This study also showed the association of ischemic AKI 

with cardiac injury based on increased myeloperoxidase activity and abnormal 

echocardiographic findings - increased left ventricular end diastolic/end systolic diameter, 

relaxation time, and decreased fractional shortening. This was observed to be accompanied 

by increased systemic and cardiac tissue levels of TNF-α and IL-1 and increased cardiac 

intercellular adhesion molecule 1 (ICAM-1) expression. In the same study, TNF-α blocker 

significantly decreased cardiomyocyte apoptosis, implying the role of TNF-α in AKI-

induced cardiac damage. Based on the myocardial depressant effect of TNF-α, there have 

been large multicenter trials about the effect of anti-TNF-α therapies (Etanercept) on 

congestive heart failure (CHF), but there is still no clear evidence of clinical benefit and 

some studies even showed worsening CHF.57

Neuroendocrine activation also underlies the pathophysiology of AKI-induced CRS. During 

AKI, SNS is activated and leads to norepinephrine overflow.53 Activation of SNS alters 

myocardial function by disrupting myocardial calcium homeostasis, increasing myocardial 

oxygen demand, and inducing apoptosis/hypertrophy of cardiac myocytes through 

adrenergic receptor stimulation.51 Activated SNS stimulates β1-adrenergic receptors in the 

juxtaglomerular apparatus of the kidney, which leads to decreased renal blood flow and 

activation of RAAS.58 Dysfunctional RAAS activation induces angiotensin II release, 

increasing systemic vascular resistance. Angiotensin II itself contributes to cardiac myocyte 

hypertrophy and apoptosis.59,60

Potential therapeutic targets

The immunomodulatory role of heme oxygenase 1 (HO-1) in AKI has been widely studied.
61 Lack of HO-1 increases the susceptibility to renal IRI and renal IRI in HO-1-knockout 

mice increases both IL-6 and its downstream signaling effector pSTAT3 in injured kidney as 

well as in heart and lung.62 Based on its cyto-protective effects in AKI animal models, HO-1 

induction is considered a promising therapeutic target in AKI.

A recent study found that dysfunction of cardiac mitochondria could play an important role 

in the pathogenesis of cardiac damage induced by AKI.63 This study showed that renal IRI 

induces fragmentation of mitochondria in a fission-dominant manner through dynamin-

related protein 1 (Drp1) activation, which is followed by cardiomyocyte apoptosis in the 

heart. The use of a Drp1 inhibitor, Mdivi-1, induces a significant decrease in mitochondrial 

fragmentation and cardiomyocyte apoptosis as well as improvement in cardiac function. 

These data suggest that preservation of normal mitochondrial dynamics could be a potential 

therapeutic target in AKI-induced heart dysfunction.

KIDNEY-BRAIN INTERACTIONS

Clinical impact

AKI-induced uremic toxins are well known to cause neurological complications including 

irritability, attention deficit, hyperreflexia, decreased mental status, seizures, and even death.
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54 The severity of neurologic impairment is more closely associated with the rate at which 

kidney function decreases than the level of azotemia itself.64 Therefore, uremic symptoms 

are usually more severe and advance more rapidly in AKI patients than in patients with 

CKD.65

Several clinical studies have identified long-term neurological effects of AKI.66,67 One 

nationwide population study showed that patients who survive dialysis-requiring AKI have 

higher risk and higher severity of stroke events compared to the control group after the 

adjustment of progression to consequent CKD or end stage renal disease (ESRD), and the 

impact is almost similar to that of diabetes.66 Another cohort study showed that among 

elderly patients who require ICU care during hospitalization, patients with dialysis-requiring 

AKI has a long-term risk of dementia even after the adjustment of other dementia-related 

risk factors (Hazard Ratio, 1.70).67

Laboratory evidence

The pathophysiology of neurologic complications after AKI is associated with the 

accumulation of neurotoxic metabolites that cause disturbances to the blood-brain barrier 

and an imbalance in cellular water transport.11,68 The central nervous system is generally 

considered to be an immune-privileged site due to blood-brain barrier, but AKI can lead to 

disruption of the blood-brain barrier, resulting in cerebral edema as well as infiltration of 

neuro-toxic metabolites into brain. The short-term effects of AKI on mouse brain include 

increases of soluble inflammatory proteins (such as keratinocyte-derived chemokine and 

granulocyte-colony stimulating factor) and increased cellular inflammation, with glial 

fibrillary acidic protein in astrocytes.69 Post-AKI brain histology shows increased microglial 

cells and pyknotic neuronal cells in the hippocampus. Another study showed the significant 

increase of TLR-4 in the hippocampus and striatum following renal IRI, suggesting a role 

for TLR-4 in AKI-induced neuronal injury.70 In an animal behavioral study, uremic mice 

showed decreased central dopamine turnover in the striatum, mesencephalon, and 

hypothalamus, which was correlated with the impairment of motor activity.71

Potential therapeutic targets

A novel reflex pathway between injured kidney and the brain has been recently described, 

called ‘reno-cerebral reflex’.72 In this study, Cao et al showed that ischemic AKI could co-

activate the intrarenal and intracerebral RAAS, oxidative stress and sympathetic activity, 

promoting ongoing inflammation in both organs. The authors also found that blocking of 

renal afferent sympathetic activity, central blockade of angiotensin II, or prevention of 

sympathetic activation could lower the AKI-induced systemic oxidative stress and 

inflammation. Intervention with RAAS inhibitors, sympatholytic drugs, or renal nerve 

ablation could be new therapeutic approaches targeting reno-cerebral crosstalk.

KIDNEY-LIVER INTERACTIONS

Clinical impact/evidence

Traditionally, hepatorenal syndrome denotes decrease in kidney function secondary to liver 

disease. For example, hepatic veno-occlusive disease often leads to reduced kidney function. 
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The efficacy of defibrotide for the treatment of sinusoidal obstruction syndrome, a life-

threatening complication following stem cell transplantation shows that treating liver 

dysfunction can directly lead to improvement of renal function.73 However, the clinical 

significance of AKI on liver is less well defined.8 Liver dysfunction can be observed in 

critically-ill AKI patients and hepatic failure increases the in-hospital mortality among these 

patient groups.74 Several clinical studies have found development of hepatic dysfunction in 

AKI patients who had alterations in protein synthesis, inflammatory responses, and 

metabolism of lipid, protein, and drugs.8,75,76 During AKI, there are changes not only in 

renal drug metabolism, but also in non-renal metabolism, which can have considerable 

influence on clinical outcomes due to under- or over-dosing and related toxicity problems. 

The mechanisms by which AKI impacts liver drug metabolism remains unclear, but the 

interaction is felt to be related to uremic toxins, inflammatory cytokines, activated 

leucocytes, and other neuro-humoral factors.8 Drug dosing needs to be carefully monitored 

in the AKI patients with hepatic dysfunction.

Laboratory evidence

An experimental study showed that AKI promotes oxidative stress, inflammation, apoptosis, 

and tissue damage in hepatocytes while increasing vascular permeability and leukocyte 

infiltration into liver.77 Recently, Lee and colleagues demonstrated that renal IRI induces 

peptidyl arginine deiminase 4 (PAD-4) in the liver. Hepatic injury and inflammation in 

PAD-4 deficient mice were found to be significantly attenuated after renal IRI compared to 

wild-type (WT) mice, implying that the extra-renal PAD-4 contributes to the distant organ 

damage after AKI.78 Lee et al also suggested that systemic increase of TNF-α, IL-17A, and 

IL-6 predispose to liver and small intestine injury after ischemic or non-ischemic AKI.79 

Furthermore, AKI-induced damaging changes in the liver and intestine are partly induced by 

direct activation of small intestine Paneth cells, which release granules containing IL-17A 

into the intestinal lumen.80

Potential therapeutic targets

Several groups have studied the therapeutic effect of antioxidants in AKI-induced liver 

damage, targeting activated oxidative stress. Administration of glutathione significantly 

ameliorates the structural and enzymatic changes in the liver after AKI.77 Another study 

investigated the effects of vitamin E on AKI-induced liver damage, showing that vitamin E 

administration alleviates the increase of plasma aspartate transaminase (AST) and alanine 

transaminase (ALT) level while preserving glutathione activity.81 Administration of 

thymoquinone, a main constituent of Nigella sativa that has anti-oxidant and anti-

inflammatory effect, before renal IRI improves renal and hepatic function and increases 

antioxidant enzyme activity in both organs.82 This was observed to be accompanied by a 

decrease of CYP3A1 and spermidine/spermine-N1-acetyl-transferase gene expression in 

liver, implying less oxidative stress following thymoquinone treatment.

Isoflurane, a well-known volatile anesthetic, shows protective effects on ischemic and non-

ischemic AKI-induced hepatic and intestinal injury via induction of the sphingosine kinase 1 

(SK-1)/sphingosine-1-phosphate pathway.83,84 Through induction of SK-1 in small intestine, 

isoflurane ameliorates hepatic and intestinal pro-inflammatory cytokine production and 
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vascular permeability as well as intestinal apoptosis. Given the high incidence of 

postoperative-AKI, it is possible that using isoflurane may improve the outcome of 

postoperative AKI-induced distant organ damage by its protective action on liver and 

intestine as well as less effects on systemic blood pressure/renal blood flow.

KIDNEY-INTESTINAL MICROBIOTA INTERACTIONS

Clinical impact/evidence

Recent clinical and experimental studies have shown the bidirectional relationship between 

intestinal microbiota and kidney diseases, but most of them have been limited to the 

interaction of intestinal microbiota with development and progression of CKD/ESRD.85,86 

Despite the limited data available on AKI-gut microbiome interactions, accumulating 

clinical data about the immunomodulatory role of gut microbiome in CKD patients 

implicates the possible role of intestinal microbiota in the patients with AKI-induced distant 

organ dysfunction.87

Laboratory evidence/Potential therapeutic targets

The significance of normal gut microbiota on experimental AKI was initially demonstrated 

by using germ-free mice that lacked any exposure to symbiotic microorganisms and 

parasites.88 In ischemic AKI, these mice showed worse functional/structural renal damage 

and enhanced inflammation compared to the control mice. Unexpectedly, they had higher 

NKT cells in the kidney. Reconstitution of germ-free mice using WT gut microbiota 

(conventionalization) was found to alleviate their increased susceptibility to AKI. In the 

analysis of baseline levels of kidney cytokines, the germ-free mice had higher interferon-γ 
(IFN-γ) and lower IL-4 level compared to the WT mice, which suggests that germ-free mice 

are more prone to a TH1 type response, similar to that seen in autoimmune disease. This 

finding implicates a potential immunomodulatory role of gut microbiota in the development 

of kidney diseases.

During fermentation, gut microbiota generate various metabolites, including multiple uremic 

retention molecules and short chain fatty acids (SCFAs). SCFAs, the fermentation end 

products from complex polysaccharides, are mostly comprised of acetate, propionate, and 

butyrate.89 Accumulating evidences suggest that SCFAs regulate inflammation, energy 

metabolism, and blood pressure, which affects kidney function through the gut-kidney axis.
89 Uremic toxins (e.g. indoles, ammonia, and trimethylamine N-oxide) generated by the gut 

microbiota, are felt to have a detrimental effect on kidney function.90

Restoring the balance of the gut microbiome has received a lot of attention as a potential 

therapeutic target for kidney disorders. These interventions include (1) reducing harmful 

uremic toxins by restricting the intake of uremic toxin precursors (lowering protein intake)91 

or by enhancing the disposal of the toxins (adsorbent therapy)92 and (2) supplementing a 

more balanced gut microbiome using pre-/pro-/syn-biotics.93,94.

Several studies have examined the effects of SCFAs on AKI using ischemia- and 

gentamicin-induced AKI models.95,96 Administration of the three main SCFAs had 

protective effect in ischemic AKI by decreasing local and systemic inflammation, oxidative 
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stress, inflammatory cell infiltration, and apoptosis in injured kidney. Administration of 

acetate, one of the main SCFAs, could also modulate epigenetic modifications in ischemic-

injured kidney tissue, by inhibiting the activity of histone deacetylase and reversing the 

decreased global DNA methylation status.95 Given the therapeutic potential of SCFAs on 

AKI outcome, more studies are necessary to elucidate the detailed mechanisms and effects 

of SCFAs on AKI.

CONCLUSION

AKI induces systemic and organ-specific hemodynamic-, humoral-, and immunologic 

imbalances, which helps explain why patients are not just dying with AKI, but from AKI.18 

Based on the current findings about different pathways linking kidney injury with distant 

organs, therapeutic strategies that targeting just a single molecule are less likely to succeed 

in reducing the AKI-induced distant organ dysfunctions. (Table 1) Understanding the 

complex interactions between kidney and distant organs should lead to new diagnostics and 

therapies to improve outcomes in patients with AKI.
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Acronym

AKI Acute kidney injury

ROS Reactive oxygen species

KDIGO Kidney Disease Improving Global Outcomes

CRRT Continuous renal replacement therapy

ICU Intensive care unit

ALI Acute lung injury

IL Interleukin

BNx Bilateral nephrectomy

IRI Ischemia-reperfusion injury

ARDS Acute respiratory distress syndrome

CXCL1 Chemokine (C-X-C motif) ligand 1

TNF-α Tumor necrosis factor alpha

TNFR1 Tumor necrosis factor receptor 1

ANP Atrial natriuretic peptide

PGE1 Prostaglandin E1
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TLR-4 Toll-like receptor 4

HMGB1 High-mobility group box protein B1

CRS Cardiorenal syndrome

CKD Chronic kidney disease

PBUT Protein-bound uremic toxin

SNS Sympathetic nervous system

RAAS Renin-angiotensin-aldosterone system

ICAM-1 Intercellular adhesion molecule-1

CHF Congestive heart failure

ANG II Angiotensin II

HO-1 Heme oxygenase-1

Drp1 Dynamin-related protein 1

ESRD End stage renal disease

PAD-4 Peptidyl arginine deiminase-4

AST Aspartate transaminase

ALT Alanine transaminase

SK-1 Sphingosine kinase-1

WT Wild-type

SCFA Short chain fatty acids
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Figure 1. The impact of acute kidney injury (AKI) on distant organs
Acute kidney injury (AKI) causes hemodynamic-, humoral-, and immunologic changes, 

which leads to dysfunction of distant organs including lung, heart, brain, liver, intestine and 

immune system. Abbreviations: AKI, acute kidney injury.
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Figure 2. Mechanisms of acute lung injury (ALI) during acute kidney injury (AKI)
Acute kidney injury (AKI) can facilitate development of acute lung injury (ALI) through 

different mechanisms - volume overload, impairment of cardiac function, systemic 

inflammation, oxidative stress, increased pulmonary vascular permeability and impaired 

alveolar fluid clearance. Abbreviations: AKI, acute kidney injury; ALI, acute lung injury; 

IL, interleukin; TNF-α, tumor necrosis factor alpha; HMGB1, high-mobility group box 

protein B1; TLR-4, toll-like receptor 4.
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Figure 3. Cascade of lung changes after acute kidney injury (AKI)
Following acute kidney injury (AKI), various inflammatory events occur in the alveolar and 

pulmonary interstitial spaces. Activated endothelium and increased vascular permeability 

allow leukocytes to transmigrate into pulmonary interstitium. Infiltrated leukocytes 

aggravate lung injury through inflammatory cytokine/chemokine secretion, increased 

oxidative stress and cell damage/apoptosis. Epithelial sodium channel and aquaporin 5 

expressions are also downregulated following AKI. Protein-rich fluid accumulation in the 

alveolar space, alveolar hemorrhage and edematous pulmonary interstitial space are 

observed in acute lung injury (ALI) following AKI. Abbreviations: AKI, acute kidney 

injury; Na, sodium, H2O, dihydrogen oxide; AQP, aquaporin; ENaC, epithelial sodium 

channel; RBC, red blood cell; HMGB-1, high-mobility group box protein B1; TLR-4 - Toll-

like receptor 4; ROS, reactive oxygen species. Based on information in Ware & Matthay97
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Figure 4. Pathophysiology of acute kidney injury (AKI)-induced cardiorenal syndrome
Acute kidney injury (AKI) triggers cardiac dysfunction through various pathophysiological 

mechanisms, including volume overload, electrolyte and acid-based imbalances, 

accumulation of uremic toxins, enhanced immune response and activation of sympathetic 

nervous system (SNS) and renin–angiotensin–aldosterone system (RAAS). Abbreviations: 

AKI, acute kidney injury; GFR, glomerular filtration rate; SNS, sympathetic nervous 

system; RAAS, renin–angiotensin–aldosterone system.
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Table 1

Possible therapeutic targets against AKI-induced distant organ injury

Organ Intervention Subject Effects Reference

Lung Blocking of CXCL1 Mouse ↓ Lung neutrophil 31

Blocking of TNF-α Mouse ↓ Pulmonary apoptosis 34

Administration of IL-10 Mouse Improved lung architecture, ↑ Lung neutrophil 9

Blocking neutrophil elastase Mouse ↓ Lung inflammation, Survival 26

Administration of CNI-1493 Mouse ↓ Pulmonary vascular permeability 29

Administration of ANP Rat ↓ Pulmonary edema, Inflammatory cytokine in the 
lung

38

Human No significant benefit 39,40

Administration of PGE1 Rat ↓ Antioxidant stress in lung, Improved lung 
architecture

42

Hemofiltration using novel membrane Human (Ex vivo) Efficient removal of systemic cytokines and 
HMGB1

46

Heart Blocking of TNF-α Rat ↓ Cardiomyocyte apoptosis 56

Human No significant benefit 57

Mitochondrial fission protein (Drp1) 
inhibition

Mouse ↓ Cardiomyocyte apoptosis, ↑ Cardiac function 63

Brain Inhibition of reno-cerebral reflex using 
RAAS inhibitors, sympatholytic drugs, 
or renal nerve ablation

Mouse ↓ Cerebral inflammation, Down-regulation of 
cerebral/renal RAAS

72

Liver Administration of glutathione Rat Improved liver architecture, ALT 77

Administration of vitamin E Mouse ↓ AST and ALT, Improved hepatic oxidant/
antioxidant balance

81

Administration of thymoquinone Rat ↓ Hepatic oxidative stress 82

Use of Isoflurane Mouse ↓ ALT, Improved hepatic architecture 83,84

Intestine Use of Isoflurane Mouse ↓ Intestinal apoptosis, Improved intestinal villi 
architecture

83,84

Supplementation with SCFA Mouse Modulation of inflammatory process, oxidative 
stress, & apoptosis in kidney after IRI

95

Rat ↑ Renal antioxidant enzyme activity, ↑ Renal 
prohibitin protein expression

96

Abbreviations: AKI, Acute kidney injury; CXCL1, Chemokine (C-X-C motif) ligand 1; TNF-α, Tumor necrosis factor α; IL, Interleukin; ANP, 
Atrial natriuretic peptide; PGE1, Prostaglandin E1; HMGB1, High-mobility group box protein B1; Drp1, Dynamin-related protein 1; RAAS, 
Renin-angiotensin-aldosterone system; ALT, Alanine transaminase; AST, Aspartate transaminase; SCFA, Short chain fatty acids; IRI, Ischemia-
reperfusion injury
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